Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Overexpression of glutaredoxin-2 reduces myocardial cell death by preventing both apoptosis and necrosis.

Identifieur interne : 000B88 ( Main/Exploration ); précédent : 000B87; suivant : 000B89

Overexpression of glutaredoxin-2 reduces myocardial cell death by preventing both apoptosis and necrosis.

Auteurs : Norbert Nagy [États-Unis] ; Gautam Malik ; Arpad Tosaki ; Ye-Shih Ho ; Nilanjana Maulik ; Dipak K. Das

Source :

RBID : pubmed:18076901

Descripteurs français

English descriptors

Abstract

Mitochondrial glutaredoxin-2 (Glrx2) has been recognized as an important redox regulator in mammalian organs including heart. To date no investigations have addressed the potential role of Glrx2 in cardiac disorders. The present study examined if myocardial overexpression of Glrx2 in the heart could rescue the cardiac cells from apoptosis and necrosis induced by ischemia and reperfusion. The human Glrx2 transgene was created by placing a full-length cDNA fragment encoding human mitochondrial Glrx2 downstream to the 5' flanking sequence and promoter of the mouse alpha-myosin heavy chain gene. The isolated hearts from Glrx2 transgenic mice and non-transgenic (wild type) littermates [on c57BL/6xC3H hybrid background] were subjected to 30 min of global ischemia followed by 2 h of reperfusion via working mode. The hearts from Glrx2 transgenic mice displayed significantly improved contractile performance and reduced myocardial infarct size and cardiomyocyte apoptosis. There was a reduction in cytochrome c release and activation of caspase 3 and caspase 9. Glrx2 overexpression also reduced the ischemia/reperfusion-mediated loss of mitochondrial cardiolipin, decreased the activities of reactive oxygen species (ROS) and preserved GSH/GSSG ratio. Glrx2 mediated survival signal appeared to be stemmed from PI-3-kinase-Akt survival signaling pathway and involved the activation of redox sensitive transcription factor NFkappaB and antiapoptotic protein Bcl-2. The results indicated a crucial role of mitochondrial Glrx2 in cardioprotection.

DOI: 10.1016/j.yjmcc.2007.08.021
PubMed: 18076901


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Overexpression of glutaredoxin-2 reduces myocardial cell death by preventing both apoptosis and necrosis.</title>
<author>
<name sortKey="Nagy, Norbert" sort="Nagy, Norbert" uniqKey="Nagy N" first="Norbert" last="Nagy">Norbert Nagy</name>
<affiliation wicri:level="2">
<nlm:affiliation>Cardiovascular Research Center, University of Connecticut, School of Medicine, Farmington, CT 06030-1110, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Cardiovascular Research Center, University of Connecticut, School of Medicine, Farmington, CT 06030-1110</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Malik, Gautam" sort="Malik, Gautam" uniqKey="Malik G" first="Gautam" last="Malik">Gautam Malik</name>
</author>
<author>
<name sortKey="Tosaki, Arpad" sort="Tosaki, Arpad" uniqKey="Tosaki A" first="Arpad" last="Tosaki">Arpad Tosaki</name>
</author>
<author>
<name sortKey="Ho, Ye Shih" sort="Ho, Ye Shih" uniqKey="Ho Y" first="Ye-Shih" last="Ho">Ye-Shih Ho</name>
</author>
<author>
<name sortKey="Maulik, Nilanjana" sort="Maulik, Nilanjana" uniqKey="Maulik N" first="Nilanjana" last="Maulik">Nilanjana Maulik</name>
</author>
<author>
<name sortKey="Das, Dipak K" sort="Das, Dipak K" uniqKey="Das D" first="Dipak K" last="Das">Dipak K. Das</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18076901</idno>
<idno type="pmid">18076901</idno>
<idno type="doi">10.1016/j.yjmcc.2007.08.021</idno>
<idno type="wicri:Area/Main/Corpus">000C28</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C28</idno>
<idno type="wicri:Area/Main/Curation">000C28</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000C28</idno>
<idno type="wicri:Area/Main/Exploration">000C28</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Overexpression of glutaredoxin-2 reduces myocardial cell death by preventing both apoptosis and necrosis.</title>
<author>
<name sortKey="Nagy, Norbert" sort="Nagy, Norbert" uniqKey="Nagy N" first="Norbert" last="Nagy">Norbert Nagy</name>
<affiliation wicri:level="2">
<nlm:affiliation>Cardiovascular Research Center, University of Connecticut, School of Medicine, Farmington, CT 06030-1110, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Cardiovascular Research Center, University of Connecticut, School of Medicine, Farmington, CT 06030-1110</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Malik, Gautam" sort="Malik, Gautam" uniqKey="Malik G" first="Gautam" last="Malik">Gautam Malik</name>
</author>
<author>
<name sortKey="Tosaki, Arpad" sort="Tosaki, Arpad" uniqKey="Tosaki A" first="Arpad" last="Tosaki">Arpad Tosaki</name>
</author>
<author>
<name sortKey="Ho, Ye Shih" sort="Ho, Ye Shih" uniqKey="Ho Y" first="Ye-Shih" last="Ho">Ye-Shih Ho</name>
</author>
<author>
<name sortKey="Maulik, Nilanjana" sort="Maulik, Nilanjana" uniqKey="Maulik N" first="Nilanjana" last="Maulik">Nilanjana Maulik</name>
</author>
<author>
<name sortKey="Das, Dipak K" sort="Das, Dipak K" uniqKey="Das D" first="Dipak K" last="Das">Dipak K. Das</name>
</author>
</analytic>
<series>
<title level="j">Journal of molecular and cellular cardiology</title>
<idno type="eISSN">1095-8584</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Apoptosis (MeSH)</term>
<term>Cardiolipins (metabolism)</term>
<term>Caspases (metabolism)</term>
<term>Cell Death (MeSH)</term>
<term>Cell Survival (MeSH)</term>
<term>Cytochromes c (metabolism)</term>
<term>Enzyme Activation (MeSH)</term>
<term>Female (MeSH)</term>
<term>Gene Expression (MeSH)</term>
<term>Glutaredoxins (genetics)</term>
<term>Humans (MeSH)</term>
<term>Male (MeSH)</term>
<term>Mice (MeSH)</term>
<term>Mice, Transgenic (MeSH)</term>
<term>Mitochondria, Heart (enzymology)</term>
<term>Mitochondria, Heart (metabolism)</term>
<term>Myocardial Contraction (MeSH)</term>
<term>Myocardial Reperfusion Injury (MeSH)</term>
<term>Myocardium (enzymology)</term>
<term>Myocardium (pathology)</term>
<term>Myocytes, Cardiac (enzymology)</term>
<term>Myocytes, Cardiac (metabolism)</term>
<term>Myocytes, Cardiac (pathology)</term>
<term>Necrosis (MeSH)</term>
<term>Oxidative Stress (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activation enzymatique (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Apoptose (MeSH)</term>
<term>Cardiolipides (métabolisme)</term>
<term>Caspases (métabolisme)</term>
<term>Contraction myocardique (MeSH)</term>
<term>Cytochromes c (métabolisme)</term>
<term>Expression des gènes (MeSH)</term>
<term>Femelle (MeSH)</term>
<term>Glutarédoxines (génétique)</term>
<term>Humains (MeSH)</term>
<term>Lésion de reperfusion myocardique (MeSH)</term>
<term>Mitochondries du myocarde (enzymologie)</term>
<term>Mitochondries du myocarde (métabolisme)</term>
<term>Mort cellulaire (MeSH)</term>
<term>Myocarde (anatomopathologie)</term>
<term>Myocarde (enzymologie)</term>
<term>Myocytes cardiaques (anatomopathologie)</term>
<term>Myocytes cardiaques (enzymologie)</term>
<term>Myocytes cardiaques (métabolisme)</term>
<term>Mâle (MeSH)</term>
<term>Nécrose (MeSH)</term>
<term>Souris (MeSH)</term>
<term>Souris transgéniques (MeSH)</term>
<term>Stress oxydatif (MeSH)</term>
<term>Survie cellulaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cardiolipins</term>
<term>Caspases</term>
<term>Cytochromes c</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Myocarde</term>
<term>Myocytes cardiaques</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Mitochondries du myocarde</term>
<term>Myocarde</term>
<term>Myocytes cardiaques</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Mitochondria, Heart</term>
<term>Myocardium</term>
<term>Myocytes, Cardiac</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glutarédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mitochondria, Heart</term>
<term>Myocytes, Cardiac</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cardiolipides</term>
<term>Caspases</term>
<term>Cytochromes c</term>
<term>Mitochondries du myocarde</term>
<term>Myocytes cardiaques</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Myocardium</term>
<term>Myocytes, Cardiac</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Apoptosis</term>
<term>Cell Death</term>
<term>Cell Survival</term>
<term>Enzyme Activation</term>
<term>Female</term>
<term>Gene Expression</term>
<term>Humans</term>
<term>Male</term>
<term>Mice</term>
<term>Mice, Transgenic</term>
<term>Myocardial Contraction</term>
<term>Myocardial Reperfusion Injury</term>
<term>Necrosis</term>
<term>Oxidative Stress</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Activation enzymatique</term>
<term>Animaux</term>
<term>Apoptose</term>
<term>Contraction myocardique</term>
<term>Expression des gènes</term>
<term>Femelle</term>
<term>Humains</term>
<term>Lésion de reperfusion myocardique</term>
<term>Mort cellulaire</term>
<term>Mâle</term>
<term>Nécrose</term>
<term>Souris</term>
<term>Souris transgéniques</term>
<term>Stress oxydatif</term>
<term>Survie cellulaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mitochondrial glutaredoxin-2 (Glrx2) has been recognized as an important redox regulator in mammalian organs including heart. To date no investigations have addressed the potential role of Glrx2 in cardiac disorders. The present study examined if myocardial overexpression of Glrx2 in the heart could rescue the cardiac cells from apoptosis and necrosis induced by ischemia and reperfusion. The human Glrx2 transgene was created by placing a full-length cDNA fragment encoding human mitochondrial Glrx2 downstream to the 5' flanking sequence and promoter of the mouse alpha-myosin heavy chain gene. The isolated hearts from Glrx2 transgenic mice and non-transgenic (wild type) littermates [on c57BL/6xC3H hybrid background] were subjected to 30 min of global ischemia followed by 2 h of reperfusion via working mode. The hearts from Glrx2 transgenic mice displayed significantly improved contractile performance and reduced myocardial infarct size and cardiomyocyte apoptosis. There was a reduction in cytochrome c release and activation of caspase 3 and caspase 9. Glrx2 overexpression also reduced the ischemia/reperfusion-mediated loss of mitochondrial cardiolipin, decreased the activities of reactive oxygen species (ROS) and preserved GSH/GSSG ratio. Glrx2 mediated survival signal appeared to be stemmed from PI-3-kinase-Akt survival signaling pathway and involved the activation of redox sensitive transcription factor NFkappaB and antiapoptotic protein Bcl-2. The results indicated a crucial role of mitochondrial Glrx2 in cardioprotection.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18076901</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>04</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1095-8584</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>44</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2008</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Journal of molecular and cellular cardiology</Title>
<ISOAbbreviation>J Mol Cell Cardiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Overexpression of glutaredoxin-2 reduces myocardial cell death by preventing both apoptosis and necrosis.</ArticleTitle>
<Pagination>
<MedlinePgn>252-60</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Mitochondrial glutaredoxin-2 (Glrx2) has been recognized as an important redox regulator in mammalian organs including heart. To date no investigations have addressed the potential role of Glrx2 in cardiac disorders. The present study examined if myocardial overexpression of Glrx2 in the heart could rescue the cardiac cells from apoptosis and necrosis induced by ischemia and reperfusion. The human Glrx2 transgene was created by placing a full-length cDNA fragment encoding human mitochondrial Glrx2 downstream to the 5' flanking sequence and promoter of the mouse alpha-myosin heavy chain gene. The isolated hearts from Glrx2 transgenic mice and non-transgenic (wild type) littermates [on c57BL/6xC3H hybrid background] were subjected to 30 min of global ischemia followed by 2 h of reperfusion via working mode. The hearts from Glrx2 transgenic mice displayed significantly improved contractile performance and reduced myocardial infarct size and cardiomyocyte apoptosis. There was a reduction in cytochrome c release and activation of caspase 3 and caspase 9. Glrx2 overexpression also reduced the ischemia/reperfusion-mediated loss of mitochondrial cardiolipin, decreased the activities of reactive oxygen species (ROS) and preserved GSH/GSSG ratio. Glrx2 mediated survival signal appeared to be stemmed from PI-3-kinase-Akt survival signaling pathway and involved the activation of redox sensitive transcription factor NFkappaB and antiapoptotic protein Bcl-2. The results indicated a crucial role of mitochondrial Glrx2 in cardioprotection.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nagy</LastName>
<ForeName>Norbert</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Cardiovascular Research Center, University of Connecticut, School of Medicine, Farmington, CT 06030-1110, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Malik</LastName>
<ForeName>Gautam</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tosaki</LastName>
<ForeName>Arpad</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ho</LastName>
<ForeName>Ye-Shih</ForeName>
<Initials>YS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Maulik</LastName>
<ForeName>Nilanjana</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Das</LastName>
<ForeName>Dipak K</ForeName>
<Initials>DK</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>HL 22559</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HL 33889</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HL 56803</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 ES06639</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016441">Retracted Publication</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>09</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Mol Cell Cardiol</MedlineTA>
<NlmUniqueID>0262322</NlmUniqueID>
<ISSNLinking>0022-2828</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002308">Cardiolipins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516008">GLRX2 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-43-6</RegistryNumber>
<NameOfSubstance UI="D045304">Cytochromes c</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="D020169">Caspases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="RetractionIn">
<RefSource>J Mol Cell Cardiol. 2012 Nov;53(5):744</RefSource>
<PMID Version="1">23230605</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017209" MajorTopicYN="Y">Apoptosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002308" MajorTopicYN="N">Cardiolipins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020169" MajorTopicYN="N">Caspases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016923" MajorTopicYN="N">Cell Death</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002470" MajorTopicYN="N">Cell Survival</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045304" MajorTopicYN="N">Cytochromes c</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004789" MajorTopicYN="N">Enzyme Activation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="Y">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008822" MajorTopicYN="N">Mice, Transgenic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008929" MajorTopicYN="N">Mitochondria, Heart</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009200" MajorTopicYN="N">Myocardial Contraction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015428" MajorTopicYN="N">Myocardial Reperfusion Injury</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009206" MajorTopicYN="N">Myocardium</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032383" MajorTopicYN="N">Myocytes, Cardiac</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009336" MajorTopicYN="N">Necrosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2007</Year>
<Month>07</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2007</Year>
<Month>08</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2007</Year>
<Month>08</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>4</Month>
<Day>4</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18076901</ArticleId>
<ArticleId IdType="pii">S0022-2828(07)01204-7</ArticleId>
<ArticleId IdType="doi">10.1016/j.yjmcc.2007.08.021</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Connecticut</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Das, Dipak K" sort="Das, Dipak K" uniqKey="Das D" first="Dipak K" last="Das">Dipak K. Das</name>
<name sortKey="Ho, Ye Shih" sort="Ho, Ye Shih" uniqKey="Ho Y" first="Ye-Shih" last="Ho">Ye-Shih Ho</name>
<name sortKey="Malik, Gautam" sort="Malik, Gautam" uniqKey="Malik G" first="Gautam" last="Malik">Gautam Malik</name>
<name sortKey="Maulik, Nilanjana" sort="Maulik, Nilanjana" uniqKey="Maulik N" first="Nilanjana" last="Maulik">Nilanjana Maulik</name>
<name sortKey="Tosaki, Arpad" sort="Tosaki, Arpad" uniqKey="Tosaki A" first="Arpad" last="Tosaki">Arpad Tosaki</name>
</noCountry>
<country name="États-Unis">
<region name="Connecticut">
<name sortKey="Nagy, Norbert" sort="Nagy, Norbert" uniqKey="Nagy N" first="Norbert" last="Nagy">Norbert Nagy</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B88 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B88 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18076901
   |texte=   Overexpression of glutaredoxin-2 reduces myocardial cell death by preventing both apoptosis and necrosis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18076901" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020